Skip to Main Content

Chemistry Textbook

The Second Law of Thermodynamics

By the end of this section, you will be able to:
  • State and explain the second and third laws of thermodynamics
  • Define Gibb's free energy and calculate the free energy changes in a chemical reaction
  • Predict spontaneity of a reaction from change in Gibbs Free Energy at different temperatures

In the quest to identify a property that may reliably predict the spontaneity of a process, a promising candidate has been identified: entropy. Processes that involve an increase in entropy of the systemS > 0) are very often spontaneous; however, examples to the contrary are plentiful. By expanding consideration of entropy changes to include the surroundings, we may reach a significant conclusion regarding the relation between this property and spontaneity. In thermodynamic models, the system and surroundings comprise everything, that is, the universe, and so the following is true:

ΔSuniv=ΔSsys+ΔSsurrΔSuniv=ΔSsys+ΔSsurr

To illustrate this relation, consider again the process of heat flow between two objects, one identified as the system and the other as the surroundings. There are three possibilities for such a process:

  1. The objects are at different temperatures, and heat flows from the hotter to the cooler object. This is always observed to occur spontaneously. Designating the hotter object as the system and invoking the definition of entropy yields the following:
    ΔSsys=qrevTsysandΔSsurr=qrevTsurrΔSsys=qrevTsysandΔSsurr=qrevTsurr
    The magnitudes of −qrev and qrev are equal, their opposite arithmetic signs denoting loss of heat by the system and gain of heat by the surroundings. Since Tsys > Tsurr in this scenario, the entropy decrease of the system will be less than the entropy increase of the surroundings, and so the entropy of the universe will increase:
    | ΔSsys |<| ΔSsurr |ΔSuniv=ΔSsys+ΔSsurr>0| ΔSsys |<| ΔSsurr |ΔSuniv=ΔSsys+ΔSsurr>0
  2. The objects are at different temperatures, and heat flows from the cooler to the hotter object. This is never observed to occur spontaneously. Again designating the hotter object as the system and invoking the definition of entropy yields the following:
    ΔSsys=qrevTsysandΔSsurr=qrevTsurrΔSsys=qrevTsysandΔSsurr=qrevTsurr
    The arithmetic signs of qrev denote the gain of heat by the system and the loss of heat by the surroundings. The magnitude of the entropy change for the surroundings will again be greater than that for the system, but in this case, the signs of the heat changes (that is, the direction of the heat flow) will yield a negative value for ΔSuniv. This process involves a decrease in the entropy of the universe.
  3. The objects are at essentially the same temperature, TsysTsurr, and so the magnitudes of the entropy changes are essentially the same for both the system and the surroundings. In this case, the entropy change of the universe is zero, and the system is at equilibrium.
    | ΔSsys || ΔSsurr |ΔSuniv=ΔSsys+ΔSsurr=0| ΔSsys || ΔSsurr |ΔSuniv=ΔSsys+ΔSsurr=0

These results lead to a profound statement regarding the relation between entropy and spontaneity known as the second law of thermodynamics: all spontaneous changes cause an increase in the entropy of the universe. A summary of these three relations is provided in Table 12.2.

The Second Law of Thermodynamics
ΔSuniv > 0 spontaneous
ΔSuniv < 0 nonspontaneous (spontaneous in opposite direction)
ΔSuniv = 0 at equilibrium
Table 12.2
EXAMPLE 12.6

Will Ice Spontaneously Melt? The entropy change for the process

H2O(s)H2O(l)H2O(s)H2O(l)

is 22.1 J/K and requires that the surroundings transfer 6.00 kJ of heat to the system. Is the process spontaneous at −10.00 °C? Is it spontaneous at +10.00 °C?

Solution We can assess the spontaneity of the process by calculating the entropy change of the universe. If ΔSuniv is positive, then the process is spontaneous. At both temperatures, ΔSsys = 22.1 J/K and qsurr = −6.00 kJ.

At −10.00 °C (263.15 K), the following is true:

ΔSuniv=ΔSsys+ΔSsurr=ΔSsys+qsurrT=22.1 J/K+−6.00×103J263.15 K=−0.7J/KΔSuniv=ΔSsys+ΔSsurr=ΔSsys+qsurrT=22.1 J/K+−6.00×103J263.15 K=−0.7J/K

Suniv < 0, so melting is nonspontaneous (not spontaneous) at −10.0 °C.

At 10.00 °C (283.15 K), the following is true:

ΔSuniv=ΔSsys+qsurrT=22.1J/K+−6.00×103J283.15 K=+0.9 J/KΔSuniv=ΔSsys+qsurrT=22.1J/K+−6.00×103J283.15 K=+0.9 J/K

Suniv > 0, so melting is spontaneous at 10.00 °C.

Check Your Learning Using this information, determine if liquid water will spontaneously freeze at the same temperatures. What can you say about the values of Suniv?

Answer:

Entropy is a state function, so ΔSfreezing = −ΔSmelting = −22.1 J/K and qsurr = +6.00 kJ. At −10.00 °C spontaneous, +0.7 J/K; at +10.00 °C nonspontaneous, −0.9 J/K.

Gibbs Free Energy

One of the challenges of using the ΔSsystem + ΔSsurr>0 to determine the spontaneity of a process is that it requires measurements of the entropy change for the surroundings (ie. ΔSsurr term) which is often inconvenient to measure. An alternative equation can be derived which is based on only the system's properties as shown below.

Condition for spontaneity:

ΔSsys+ΔSsurr>0 ΔΔSsys+ΔSsurr>0

ΔSsurr = qrev/T. But, for many realistic applications, the surroundings are vast in comparison to the system. In such cases, the heat gained or lost by the surroundings as a result of some process represents a very small, nearly infinitesimal, fraction of its total thermal energy. As a result, qsurr is a good approximation of qrev, and the second law may be stated as the following:

ΔSsys+qsurrT>0 ΔSsys+qsurrT>0

The first law requires that qsurr = −qsys, and at constant pressure qsys = ΔHsys. So, this expression may be rewritten as:

Δ S sys Δ H sys T >0 Δ S sys Δ H sys T >0

Multiplying both sides of this equation by −T, and rearranging yields the following:

Δ H sys TΔ S sys <0 Δ H sys TΔ S sys <0

For simplicity’s sake, the subscript “sys” will be omitted henceforth. Also, we introduce a new thermodynamic property, ΔG to represent ΔH−TΔS. Therefore, In a spontaneous process:

ΔG= Δ H TΔ S <0 ΔG= Δ H TΔ S <0

The free energy change (ΔG= ΔHsys−TΔSsys) is therefore a reliable indicator of the spontaneity of a process. It is directly related to the previously identified spontaneity indicator, ΔSuniv as ΔG=−TΔSuniv. Table 12.3 summarizes the relation between the spontaneity of a process and the arithmetic signs of these indicators.

Relation between Process Spontaneity and Signs of Thermodynamic Properties
ΔSuniv > 0 ΔG < 0 spontaneous
ΔSuniv < 0 ΔG > 0 nonspontaneous
ΔSuniv = 0 ΔG = 0 at equilibrium
Table 12.3

Gibb's Free energy is a thermodynamic property that can be interpreted as the energy available to do work. It is mathematically expressed as:

G=HTSG=HTS

Under standard conditions (1atm and 25°C): G°=H°TS°G°=H°TS°

Free energy is a state function, and at constant temperature and pressure, the Standard free energy change (ΔG) may be expressed as the following:

ΔG°= νΔGf°(products) νΔGf°(reactants)

where ν represents the stoichiometric coefficients, ΔGf° represents the standard Gibbs Free Energies of formation.

 

 

EXAMPLE 12.6

Using Standard Free Energies of Formation to Calculate ΔG°consider the decomposition of yellow mercury(II) oxide.

HgO(s,yellow)Hg(l)+12O2(g)HgO(s,yellow)Hg(l)+12O2(g)

Calculate the standard free energy change at room temperature, ΔG°,ΔG°, using (a) standard free energies of formation and (b) standard enthalpies of formation and standard entropies. Do the results indicate the reaction to be spontaneous or nonspontaneous under standard conditions?

Solution The required data are available in Appendix G and are shown here.

Compound ΔGf°(kJ/mol)ΔGf°(kJ/mol) ΔHf°(kJ/mol)ΔHf°(kJ/mol) S°(J/K·mol)S°(J/K·mol)
HgO (s, yellow) −58.43 −90.46 71.13
Hg(l) 0 0 75.9
O2(g) 0 0 205.2
Table 12.4

(a) Using free energies of formation:

ΔG°=νΔGf°(products)νΔGf°(reactants)ΔG°=νGSf°(products)νΔGf°(reactants)
=[1ΔGf°Hg(l)+12ΔGf°O2(g)]1ΔGf°HgO(s,yellow)=[1ΔGf°Hg(l)+12ΔGf°O2(g)]1ΔGf°HgO(s,yellow)
=[1mol(0 kJ/mol)+12mol(0 kJ/mol)]1 mol(−58.43 kJ/mol)=58.43 kJ/mol=[1mol(0 kJ/mol)+12mol(0 kJ/mol)]1 mol(−58.43 kJ/mol)=58.43 kJ/mol

(b) Using enthalpies and entropies of formation:

ΔH°=νΔHf°(products)νΔHf°(reactants)ΔH°=νΔHf°(products)νΔHf°(reactants)
=[1ΔHf°Hg(l)+12ΔHf°O2(g)]1ΔHf°HgO(s,yellow)=[1ΔHf°Hg(l)+12ΔHf°O2(g)]1ΔHf°HgO(s,yellow)
=[1 mol(0 kJ/mol)+12mol(0 kJ/mol)]1 mol(−90.46 kJ/mol)=90.46 kJ/mol=[1 mol(0 kJ/mol)+12mol(0 kJ/mol)]1 mol(−90.46 kJ/mol)=90.46 kJ/mol
ΔS°=νΔS°(products)νΔS°(reactants)ΔS°=νΔS°(products)νΔS°(reactants)
=[1ΔS°Hg(l)+12ΔS°O2(g)]1ΔS°HgO(s,yellow)=[1ΔS°Hg(l)+12ΔS°O2(g)]1ΔS°HgO(s,yellow)
=[1 mol(75.9 J/mol K)+12mol(205.2 J/mol K)]1 mol(71.13 J/mol K)=107.4 J/mol K=[1 mol(75.9 J/mol K)+12mol(205.2 J/mol K)]1 mol(71.13 J/mol K)=107.4 J/mol K
ΔG°=ΔH°TΔS°=90.46 kJ298.15 K×107.4 J/K·mol×1 kJ1000 JΔG°=ΔH°TΔS°=90.46 kJ298.15 K×107.4 J/K·mol×1 kJ1000 J
ΔG°=(90.4632.01)kJ/mol=58.45 kJ/molΔG°=(90.4632.01)kJ/mol=58.45 kJ/mol

Both ways to calculate the standard free energy change at 25 °C give the same numerical value (to three significant figures), and both predict that the process is nonspontaneous (not spontaneous) at room temperature.

Check Your Learning Calculate ΔG° using (a) free energies of formation and (b) enthalpies of formation and entropies (Appendix G). Do the results indicate the reaction to be spontaneous or nonspontaneous at 25 °C?

C2H4(g)H2(g)+C2H2(g)C2H4(g)H2(g)+C2H2(g)
Answer:

(a) 140.8 kJ/mol, nonspontaneous

(b) 141.5 kJ/mol, nonspontaneous

Temperature Dependence of Spontaneity

As was previously demonstrated in this chapter’s section on entropy, the spontaneity of a process may depend upon the temperature of the system. Phase transitions, for example, will proceed spontaneously in one direction or the other depending upon the temperature of the substance in question. Likewise, some chemical reactions can also exhibit temperature dependent spontaneities. To illustrate this concept, the equation relating free energy change to the enthalpy and entropy changes for the process is considered:

ΔG=ΔHTΔSΔG=ΔHTΔS

The spontaneity of a process, as reflected in the arithmetic sign of its free energy change, is then determined by the signs of the enthalpy and entropy changes and, in some cases, the absolute temperature. Since T is the absolute (kelvin) temperature, it can only have positive values. Four possibilities therefore exist with regard to the signs of the enthalpy and entropy changes:

  1. Both ΔH and ΔS are positive. This condition describes an endothermic process that involves an increase in system entropy. In this case, ΔG will be negative if the magnitude of the TΔS term is greater than ΔH. If the TΔS term is less than ΔH, the free energy change will be positive. Such a process is spontaneous at high temperatures and nonspontaneous at low temperatures.
  2. Both ΔH and ΔS are negative. This condition describes an exothermic process that involves a decrease in system entropy. In this case, ΔG will be negative if the magnitude of the TΔS term is less than ΔH. If the TΔS term’s magnitude is greater than ΔH, the free energy change will be positive. Such a process is spontaneous at low temperatures and nonspontaneous at high temperatures.
  3. ΔH is positive and ΔS is negative. This condition describes an endothermic process that involves a decrease in system entropy. In this case, ΔG will be positive regardless of the temperature. Such a process is nonspontaneous at all temperatures.
  4. ΔH is negative and ΔS is positive. This condition describes an exothermic process that involves an increase in system entropy. In this case, ΔG will be negative regardless of the temperature. Such a process is spontaneous at all temperatures.

These four scenarios are summarized in Figure 12.11.

A table with three columns and four rows is shown. The first column has the phrase, “Delta S greater than zero ( increase in entropy ),” in the third row and the phrase, “Delta S less than zero ( decrease in entropy),” in the fourth row. The second and third columns have the phrase, “Summary of the Four Scenarios for Enthalpy and Entropy Changes,” written above them. The second column has, “delta H greater than zero ( endothermic ),” in the second row, “delta G less than zero at high temperature, delta G greater than zero at low temperature, Process is spontaneous at high temperature,” in the third row, and “delta G greater than zero at any temperature, Process is nonspontaneous at any temperature,” in the fourth row. The third column has, “delta H less than zero ( exothermic ),” in the second row, “delta G less than zero at any temperature, Process is spontaneous at any temperature,” in the third row, and “delta G less than zero at low temperature, delta G greater than zero at high temperature, Process is spontaneous at low temperature.”
Figure 12.11 There are four possibilities regarding the signs of enthalpy and entropy changes.
EXAMPLE 12.7

Predicting the Temperature Dependence of Spontaneity The incomplete combustion of carbon is described by the following equation:

2C(s)+O2(g)2CO(g)2C(s)+O2(g)2CO(g)

How does the spontaneity of this process depend upon temperature?

Solution Combustion processes are exothermic (ΔH < 0). This particular reaction involves an increase in entropy due to the accompanying increase in the amount of gaseous species (net gain of one mole of gas, ΔS > 0). The reaction is therefore spontaneous (ΔG < 0) at all temperatures.

Check Your Learning Popular chemical hand warmers generate heat by the air-oxidation of iron:

4Fe(s)+3O2(g)2Fe2O3(s)4Fe(s)+3O2(g)2Fe2O3(s)

How does the spontaneity of this process depend upon temperature?

Answer:

ΔH and ΔS are negative; the reaction is spontaneous at low temperatures.

Key Concepts and Summary

The second law of thermodynamics states that a spontaneous process increases the entropy of the universe, Suniv > 0. If ΔSuniv < 0, the process is nonspontaneous, and if ΔSuniv = 0, the system is at equilibrium.

Gibbs free energy (G) is a state function defined with regard to system quantities only and may be used to predict the spontaneity of a process. A negative value for ΔG indicates a spontaneous process; a positive ΔG indicates a nonspontaneous process; and a ΔG of zero indicates that the system is at equilibrium. A number of approaches to the computation of free energy changes are possible.

Key Equations

  • ΔSuniv = ΔSsys + ΔSsurr
  • ΔSuniv=ΔSsys+ΔSsurr=ΔSsys+qsurrTΔSuniv=ΔSsys+ΔSsurr=ΔSsys+qsurrT
  • ΔG = ΔHTΔS