Skip to Main Content

Organic Chemistry Text Book (CHEM 3401 and 3402)

5.6 Meso Compounds

Achiral Diastereomers (meso-Compounds)

The chiral centers in the preceding examples have all been different, one from another. In the case of 2,3-dihydroxybutanedioic acid, known as tartaric acid, the two chiral centers have the same four substituents and are equivalent. As a result, two of the four possible stereoisomers of this compound are identical due to a plane of symmetry, so there are only three stereoisomeric tartaric acids. Two of these stereoisomers are enantiomers and the third is an achiral diastereomer, called a meso compound. Meso compounds are achiral (optically inactive) diastereomers of chiral stereoisomers. Investigations of isomeric tartaric acid salts, carried out by Louis Pasteur in the mid 19th century, were instrumental in elucidating some of the subtleties of stereochemistry. 
Some physical properties of the isomers of tartaric acid are given in the following table.

(+)-tartaric acid: [α]D = +13º m.p. 172 ºC
(–)-tartaric acid: [α]D = –13º m.p. 172 ºC
meso-tartaric acid: [α]D = 0º m.p. 140 ºC

Fischer projection formulas provide a helpful view of the configurational relationships within the structures of these isomers. In the following illustration a mirror line is drawn between formulas that have a mirror-image relationship. In demonstrating the identity of the two meso-compound formulas, remember that a Fischer projection formula may be rotated 180º in the plane.

A model of meso-tartaric acid may be examined by

Conformational Enantiomorphism

The Fischer projection formula of meso-tartaric acid has a plane of symmetry bisecting the C2–C3 bond, as shown on the left in the diagram below, so this structure is clearly achiral. The eclipsed orientation of bonds that is assumed in the Fischer drawing is, however, an unstable conformation, and we should examine the staggered conformers that undoubtedly make up most of the sample molecules. The four structures that are shown to the right of the Fischer projection consist of the achiral Fischer conformation (A) and three staggered conformers, all displayed in both sawhorse and Newman projections. The second and fourth conformations (B & D) are dissymmetric, and are in fact enantiomeric structures. The third conformer (C) has a center of symmetry and is achiral.

Conformations of meso-Tartaric Acid

eclipsed, achiral
staggered, chiral
staggered, achiral
staggered, chiral

Since a significant proportion of the meso-tartaric acid molecules in a sample will have chiral conformations, the achiral properties of the sample (e.g. optical inactivity) should not be attributed to the symmetry of the Fischer formula. Equilibria among the various conformations are rapidly established, and the proportion of each conformer present at equilibrium depends on its relative potential energy (the most stable conformers predominate). Since enantiomers have equal potential energies, they will be present in equal concentration, thus canceling their macroscopic optical activity and other chiral behavior. Simply put, any chiral species that are present are racemic.

It is interesting to note that chiral conformations are present in most conformationally mobile compounds, even in the absence of any chiral centers. The gauche conformers of butane, for example, are chiral and are present in equal concentration in any sample of this hydrocarbon. The following illustration shows the enantiomeric relationship of these conformers, which are an example of a chiral axis rather than a chiral center.