My name is Mirari Williams I am a sophomore at Georgia Southern University and am currently pursuing a major in Mechanical Engineering. Although I aim to pursue a career in Mechanical engineering I do have a passion for marine biology and forensic anthropology. Over the years I have built upon my experience with engineering by attending summer programs at various colleges and competing in competitions from robotics to ROV systems. I am a busy student with a lot of interest and curiosities in different subject. In my free time, I enjoy working out, swimming, volleyball, writing stories and reading psychology in my spare time. As of nine weeks ago I am a frequent blogger on different topic surrounding the subject of digital humanities.
Highlights of my work on Project 1&2

In this project, I focused most of my work on creating data visualization and collecting responses for our research. I started off by scoping out evidence to support our idea of solar energy and its increase in our daily lives. On this occasion, I ventured out with my niece to the biological sciences building where there seemed to be more uses of solar energy. I was also given the task of completing the poster that will describe our project and research. The poster was a collective of the processes we took to complete the project. It included the places we went to gather our information, our resources, and the data that we gathered.

Another part of the project that I worked on was designing the website so that it can, not only look user-friendly but to be informative and "riveting". I did this by making the color scheme compatible with the topic at hand (solar). I also played around with the text to create and emphasize certain words that I thought should be noticed by people. To make our project more legit I took it upon myself to create a map of the solar farms constructed by an organization and conducted a survey on the millennials and what they think of solar powered houses.
This picture was taken upon entering the building. I took this picture because it was a great spot to show how the natural light and the LED work together to make indoor lighting. The LED lights are made to emit more light while using less energy. Another attractive and efficient detail of the building are to floor to ceiling windows that bring in natural light as a resourceful substitute to installed lighting that would use up more
I ventured around campus capturing all the sites where solar energy is used. This solar panel is found in between forest drive and the engineering building. Other replicas of this solar panel can be found in front of the IT building on the umbrellas of the tables where the energy is used for the electricity in the power outlets in the table.
This picture shows me photographing a solar power fan in an outside study area behind the biological science building. Fans like this one are all around the building on the outside patios and are a good example of solar energy in everyday life. Not only are they larger but they have a nice design so that it can capture the sunlight while working as a normal fan.
This is a closer picture of what the fan looks like on another side of the building in an outside seating area.

Because this fan is not directly below the sun or catching any direct sunlight I concluded that the fan does not have panels directly attached to it but, instead, uses the energy from the solar panels on top of the building.
Both are pictures that were taken inside the restroom of the biological sciences building, and both are powered by solar energy and are unique to their uses. The toilet has a two-way flushing handle to alter the flow of water so that it can save more energy. It proves to be very efficient upon trying it myself; it has a low flow and standard flow setting depending on wastes. The faucet is also very efficient in that its very design is made for saving water and that its power runs off solar energy as well.
Solar Map

This map was the part I did in the second project along with orchestrating my group members how the points show be put on the map and the information that should be displayed. I also created the color scheme of the web page so that the users could get a sunnier vibe from our website.
This is the survey that I conducted for millennials (age 18-25) for their thoughts on the increase of solar energy as a primary resource and the design of future of their homes based off a solar model. It consisted of ten straightforward questions of their preferences and knowledge on solar homes.